热门搜索

历史搜索

广告

HR如何通过数据分析来提升人效?

以数据和事实为基础,以假设为驱动,同时兼具逻辑和真知灼见。

大家好!我为什么会选择这么一个题目?因为从我自半年前做HR数据分析的线下课以来,经常会遇到一些朋友都来问我关于人效应该如何分析,包括该怎么找到相关数据、拿到数据后如何入手、该用什么思维,等等。今天我整理了一些内容,希望在45分钟的时间内给大家分享一些我的思考。

/ 1 /

什么是人效?

人效就是一个简单的KPI,最早零售行业应用较多,后来逐渐应用到了其他行业。简单以一个词来解释,人效就是平均的人均绩效或者是单位绩效。

不同的企业可能会有不同的定义:有的企业是人均的销售额或者是营业额,还有的用人均利润额,还有的公司以人均的运营费用评估它的人效,费用越低人效越高。

此外,也有的公司会使用更加广义的人效指标,比如以人员费用占总体运营费用的比例评估人效,还有的使用人员增长率。这段时间人员增长和公司整体的利润相比较。

马云在创立中供铁军时,要求人均销售额达到100万人民币。换句话说,公司每增加一个人,就要增加一百万人民币的收入。再后来的淘宝公司,也有一个类似的人效目标,要求每增加一个人,至少要多产生一亿人民币的交易额。通过一定比例把交易额换算成收入,大概是200万人民币销售额。

再看以增长作为人效目标的案例,比如平安集团,要求利润增长率一定要大于营业收入增长,而营业收入增长又一定要大于人力成本的增长。我自己曾经服务过的一家企业也有类似的目标,每年做预算时,就非常明确地提出来人员编制的增长率不能超过公司收入增长率的50%

企业在拟定好人效目标以后,可以设立数据仪表盘,定期按季度或月度来跟踪人效目标的实现情况。方便随时发现问题,提出相应的改进措施。

/ 2 /

如何开展人效分析?

有了人效的数据,我们又该如何去分析它们呢?有两个维度非常重要:一个是时间,另一个是空间

人效分析

时间维度下我们经常会比较同比和环比的数据。今年2月比去年2月增长多少,这是同比。今年2月比今年1月增长了多少,这是环比。

同样,空间维度也要做对比。相对于其他企业,你的数据表现是怎样。原来我在汽车行业,所在细分行业前几年增长很快,年平均增长率达到30%,如果你增长了20%,看上去很高,但是跟行业比还是不合格。此外,空间维度还包括了企业内部各部门之间数据的比较。

我们来看一个案例的数据,你该怎样分析它的人效?

人效分析

数据看上去比较复杂,我们把它用可视化的形式来展示,问题就比较容易理解了。

人效分析

第一幅图可以看到人数在增加,但是人均营业额是在下降。第二幅图显示,人均利润额也是在下降的。

造成上面的原因是什么呢?我们来看第三幅图,发现营业额虽然是在增长,但是后期增长速度减缓,而另外一方面整体成本一直在呈上升趋势,所以这就导致了公司整体利润下跌。此时,公司还在不断增加人员数量,当然就造成了人效的降低。

我们再看一下人力成本占运营成本的比例变化趋势。从第四幅图上可以看出,人力成本占比一开始有下降,但是后面又开始缓慢上升。这对企业来说可能不是个好消息,需要想办法把人力总成本降下去。

我们还可以做一个简单的回归分析。简单说,就是通过回归的方式来发现两组数据之间是否存在相关性。

回归分析

大家注意这里只是讲相关性,还没有讲他们之间存在因果性。假如我们把员工人数当成一组数据,比如说X,然后公司的利润当成另外一组数据是Y,两组数据做一个散点图,可以看到公司利润随着人数的增加先是上升,然后开始下降。

如果我们把回归方程式求出来,找到利润最高点对应的人数(X值)是多少,这就意味着,在其他条件不变的情况下,当人数达到这个值时,利润是最多的。这是一个理论值,这个人数可能就是我需要参考的一个理想数字。在这个公式中,很容易算出来X大概是4200左右。

接下来我们看看空间维度。很多人比较困惑,我该到哪里去找其他企业的数据,这里给大家建议四个渠道

第一个是行业内的上市公司。因为上市公司的数据、年报是公开的,翻年报你就可以找到相应的财务指标和人数。

第二个是行业协会。

第三个是我们的招聘人员。他们可以利用招聘的机会很方便去获得竞争对手的信息,比如对手的组织设置、人数、销售额等等。

第四个是花钱找咨询公司做专门的调研,除了你自己花钱,其他参与调研的公司可以免费获得数据,最后的数据信息都是匿名的,你至少可以看到行业的标准应该是什么样子。

怎样找到上市公司的数据?在这里给大家一个最简单的方法,我经常上新浪财经,每一家上市公司都可以找到。通过企业的股票代码找到它的年报,里面关于企业的财务数据、部门人数,事无巨细全都有。你还可以根据这个企业所在板块,找到同类其他各家上市企业的数据,相信这些数据可以帮助你做一些很好的人效对标的。

/ 3 /

常用的数据分析思维

有了数据之后,接下来该如何分析问题?在这里给大家介绍三个最重要的数据问题分析思维。

第一个思维叫金字塔分析法(MECE,英文的叫法来自麦肯锡公司,意思就是任何问题都应该把它分解到相互之间独立而排他和整体而言穷尽而无遗漏。

举个例子,我遇到一家公司,他们有段时间销售的人效不是很好,但是不知道该如何下手去分析。那我们就可以按金字塔法从销售额上一路分解下去。最后就比较容易看到,哪个环节的销量发生了下降,方便我们后面做调整。

金字塔分析

第二个思维叫5W2H。就是任何问题都可以做以下提问来分析:什么原因(Why)、什么事(What)、什么人(Who)、什么时间(When)、什么地方(Where)、How(怎么回事)以及Howmuch(什么价格)。

举个例,我们在分析上面的销售邀约的时候,你可以用5W2H分析:都邀约了什么人?这些人都是从哪里邀约来的?什么时候邀约的?以什么价格邀约来的?等等。

5W2分析

第三个思维是5WHY。连续问5个为什么。这个方法最早来自丰田汽车,一般遇到很多问题时,你如果连问5个为什么,通常最后这个答案就浮现出来了。

比如,为什么销售额下降了?因为新客户减少了;为什么新客户减少了?因为销售转化率减少了;为什么销售转化率减少了?因为新来的销售人员销售技巧掌握不足。为什么掌握不足?因为对他们的培训未达到既定目标。为什么没有达到既定的目标?因为前段时间HR人手不够,没安排好。如果分析到了这一步,基本上你就知道接下来该怎么做了。

在做绩效的分析时,还有一个常用的模型叫吉尔伯托行为工程模型。它把绩效问题原因分为两大类。第一类属于环境类,包括信息、资源和激励。另一大类属于个体类,包括知识技能、能力和动机。

吉尔伯托行为工程模型

当组织发生绩效问题的时候,通常原因都可以从这两大类、六个维度去分析。国外曾经有研究发现,当组织发生绩效不佳时,大家通常都容易从员工个体去找原因,而实际上,75%的绩效问题都是因为环境类的原因,只有25%属于个体类的原因。

/ 4 / 

数据分析原则

最后跟大家来分享一下做数据分析的原则:

第一个原则,任何数据如果没有比较(空间和时间维度的比较),是没有意义的,所以叫无比较不分析。

第二个原则,做分析时一定要确保数据的一致性。有时候各家企业对数据的定义可能会不一样,比如说计算离职率。你在做时间维度对比的时候,只要能确保所有数据是一致的,后面都不会有大问题。

第三个原则,分析一定要结合组织的战略目标。比如,如果你的公司目标就是要追求营业额或者销量,那么你去把重点放在利润分析上就没有太大意义。要想清楚组织要什么,然后再开展分析。

最后一个原则,分析的结果一定是要落实到某个行动上,不要为了分析而分析。如果你分析的原因很好,但是无法转化为可实施的行动,这样的分析还是失败的。

最后送给大家一句话,是前段时间我读冯唐的一本书里提到的。他在麦肯锡工作过十年,然后把麦肯锡的方法论高度总结成为一句话:以事实为基础,以假设为驱动,同时兼具逻辑性和真知灼见。我把这句话稍稍修改了一下:以数据和事实为基础,以假设为驱动,同时兼具逻辑和真知灼见。

我自己在做数据分析的课程时接触了很多学员,你会发现分析做得好的往往是那些拥有自己的一套逻辑以及对事物有真知灼见的学员,而这都来自他们平时对周边事物的敏锐观察,以及在人力资源领域内的长期积累。

谢谢大家!

本文系范珂授权世界经理人发布,并经世界经理人编辑。文章内容仅代表作者独立观点,不代表世界经理人立场,如需转载请联系原作者获取授权,并请附上出处(世界经理人)及本页链接http://east-01.com/ARTICLE/8800100440,推荐关注(ID:CEC_GLOBALSOURCES)。

相关推荐

评论

评论共0